مقایسه عملکرد شبکه عصبی مصنوعی و رگرسیون لجستیک در تحلیل تشخیص شاخصq توبین
نویسندگان
چکیده مقاله:
شاخص توبین یکی از شاخص های مهم در دنیای سرمایه گذاری است که بعنوان معیاری برای ارزیابی عملکرد شرکت ها جهت تصمیم گیری برای سرمایه گذاری های صحیح به کار می رود. اما در دقت نتایج مبتنی بر این شاخص، ابهاماتی وجود دارد که پژوهشگران را بر آن داشته است تا به دنبال برآورد این شاخص از روی دیگر شاخص های مالی باشند. اما شاخص توبین یک شاخص پویاست و به علت مبتنی بودن بر قیمت بازار، ممکن است در لحظه مقدار آن تغییر کند. بنابراین استفاده از روش هایی مانند رگرسیون چندگانه که تلاش می کنند مقدار دقیق متغیر وابسته را پیش بینی کنند منطقی به نظر نمی رسد. به همین دلیل این تحقیق به منظور انجام قضاوت در مورد شاخص توبین از روی دیگر شاخص های مالی، روشهای مبتنی بر پیش بینی دقیق مانند رگرسیون خطی را مورد نقد قرار داده و به جای آن استفاده از روش های تحلیل تشخیص مانند رگرسیون لجستیک و شبکه عصبی را توصیه می کند. تحلیل تشخیص، روشی برای طبقه بندی مجموعه ای از مشاهدات به یکی از دو یا چندین گروه تعیین شده است به طوریکه مشاهدات درون هر گروه بیشترین شباهت را به یکدیگر داشته باشند. لذا این پژوهش با استفاده از اطلاعات مالی 184 شرکت پذیرفته شده در بورس اوراق بهادار تهران در سالی مالی منتهی به 29 اسفند 1393 به کمک رگرسیون لجستیک و شبکه عصبی به تحلیل تشخیص شاخص توبین پرداخته و نتایج دو تکنیک را گزارش و خروجی را تحلیل و با یکدیگر مقایسه می کند.
منابع مشابه
مقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص همزمان بیماری فشارخون و دیابت
Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods : This cross-sectional study wa...
متن کاملمقایسه شبکه عصبی مصنوعی و رگرسیون لجستیک در پیشبینیپاسخهای دو حالتی مطالعات پزشکی
چکیده زمینه و هدف: رگرسیون لجستیک یک مدل عمومی برای بررسی رابطه بین متغیرهای مستقل و پاسخهای دوحالتی است. یکی از مدلهای انعطافپذیر که به طور جایگزین میتواند مورد استفاده قرار گیرد، مدل شبکه عصبی مصنوعی است. این مطالعه با هدف مقایسهی قدرت پیشبینی پاسخهای دوحالتی دادههای پزشکی، با مدل شبکه عصبی مصنوعی و رگرسیون لجستیک انجام شد. مواد و روش کار: برای انجام این پژوهش، از دادههای 639 بیمار م...
متن کاملمقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص همزمان بیماری فشارخون و دیابت
زمینه و هدف : دیابت و فشار خون از جمله بیماریهای غیر واگیر هستند که شیوع آنها برای مسئولان بهداشتی کشور بسیار مهم می باشند. هدف این مطالعه مقایسه مدل رگرسیون لجستیک ( lr ) دو متغیره با شبکه های عصبی مصنوعی ( artificial neural networks=ann ) در پیش بینی همزمان رخداد بیماری فشارخون ودیابت میباشد. روش کار : این مطالعه تحلیلی- مقطعی در سال 1392-1391 در تهران با نمونه ای 12000 نفر از بالغین انج...
متن کاملمقایسه شبکه عصبی مصنوعی و رگرسیون لجستیک در پیش بینیپاسخ های دو حالتی مطالعات پزشکی
چکیده زمینه و هدف: رگرسیون لجستیک یک مدل عمومی برای بررسی رابطه بین متغیرهای مستقل و پاسخ های دوحالتی است. یکی از مدل های انعطاف پذیر که به طور جایگزین می تواند مورد استفاده قرار گیرد، مدل شبکه عصبی مصنوعی است. این مطالعه با هدف مقایسه ی قدرت پیش بینی پاسخ های دوحالتی داده های پزشکی، با مدل شبکه عصبی مصنوعی و رگرسیون لجستیک انجام شد. مواد و روش کار: برای انجام این پژوهش، از داده های 639 بیمار م...
متن کاملاستفاده از روش تحلیل مولفههای اصلی برای افزایش صحت پیشبینی سندرم متابولیک در مدلهای شبکه عصبی مصنوعی و رگرسیون لجستیک
زمینه و هدف: در فرآیند مدلسازی، زمانیکه بین متغیرهای کمکی همبستگیهای نسبتا قوی وجود داشته باشد، همخطیچندگانه ایجاد شده و باعث کاهش کارآیی مدل میگردد. هدف از این مطالعه استفاده از تحلیل مولفههای اصلی برای تعدیل اثر همخطیچندگانه در مدلهای رگرسیون لجستیک و شبکه عصبی مصنوعی و بررسی تاثیر آن بر صحت و دقت پیشبینی سندرم متابولیک بود. روش بررسی: در این مطالعه توصیفی – تحلیلی تعداد 347 نفر از...
متن کاملمقایسه عملکرد روشهای شبکه عصبی مصنوعی پرسپترون چندلایه مبتنی بر الگوریتم wrapper، تحلیل ممیزی و رگرسیون لجستیک در تعیین عوامل خطر دیابت نوع 2
هدف: در این مطالعه عملکرد پیشبینی سه مدل آماری جهت تعیین ریسک فاکتورهای دیابت مقایسه گردید. مواد و روشها: شاخص توده بدن (BMI)، قندخون ناشتا (FBS)، فشارخون (HT)، چربیهای خون (TC، TG، HDL و LDL، HbA1C)، وزن و سابقه سیگار کشیدن از پرونده درمانی افراد تحت بررسی گردآوری شد. مدلهای شبکه عصبی مصنوعی پرسپترون چندلایه (MLP) و تحلیل ممیزی (DA) رگرسیون لجستیک (LR) به منظور شناسایی ریسک فاکتورها بر داد...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 4
صفحات 1- 28
تاریخ انتشار 2019-02-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023